Lithium Oxide
I just search it up to be honest
The balanced equation is
4Fe+3O₂⇒2Fe₂O₃
We know that the mole of Fe₂O₃ is 6, and since the ratio between oxygen and <span>Fe₂O₃ is 3:2, we can see that
3:2 = x:6 (3 oxygen moles can make 2 </span>Fe₂O₃ moles = x oxygen moles can make 6 <span>Fe₂O₃ moles)
</span><span>
Multiply outside and inside (3*6 , 2*x) and put them on opposing sides of the equation
2*x = 3*6
2x=18
x=9
Therefore 9 moles of oxygen is needed.
</span>
FILTRATION When the substances in a mixture have different particle sizes, they are separated by filtration. The mixture is poured through a sieve or filter. The smaller particles slip through the holes, but the larger particles do not.p
Answer:
A) [H3PO4] will increase, [KH2PO4] will decrease, and pH will slightly decrease.
Explanation:
A buffer is a solution which resists changes to its pH when a small amount of acid or base is added to it.
Buffers consist of a weak acid (HA) and its conjugate base (A–) or a weak base and its conjugate acid. Weak acids and bases do not completely dissociate in water, and instead exist in solution as an equilibrium of dissociated and undissociated species. When a small quantity of a strong acid is added to a buffer solution, the conjugate base, A-, reacts with the hydrogen ions from the added acid to form the weak acid and a salt thereby removing the extra hydrogen ions from the solution and keeping the pH of the solution fairly constant. On the other hand, if a small quantity of a strong base is added to the buffer solution, the weak acid dissociates further to release hydrogen ions which then react with the hydroxide ions of the added base to form water and the conjugate base.
For example, if a small amount of strong acid is added to a buffer solution that is 0.700 M H3PO4 and 0.700 M KH2PO4, the following reaction is obtained:
KH₂PO₄ + H+ ----> K+ + H₃PO₄
Therefore, [H₃PO₄] will increase, [KH₂PO₄] will decrease, and pH will slightly decrease.:
Answer:
1 atm
Explanation:
Step 1: Write the balanced equation
NH₄OH(aq) ⇒ H₂O(l) + NH₃(g)
Step 2: Calculate the moles corresponding to 8 g of NH₄OH
The molar mass of NH₄OH is 35.04 g/mol.
8 g × 1 mol/35.04 g = 0.2 mol
Step 3: Calculate the moles of NH₃ formed from 0.2 moles of NH₄OH
The molar ratio of NH₄OH to NH₃ is 1:1. The moles of NH₃ formed are 1/1 × 0.2 mol = 0.2 mol
Step 4: Calculate the pressure of 0.2 moles of NH₃ in a container of 5.00 L at 25 °C (298 K)
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.2 mol × 0.0821 atm.L/mol.K × 298 K / 5.00 L
P = 1 atm