1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
Answer:
ωf = 0.16 rad/s
Explanation:
Moment of inertia of the child = mr² = 20(1.6²) = 51.2 kg•m²
Moment of Inertia of the MGR = ½mr² = ½(180)1.6² = 230.4 kg•m²
(ASSUMING it is a uniform disk)
Initial angular momentum of the child = Iω = I(v/r) = 51.2(1.4/1.6) = 44.8 kg•m²/s
Conservation of angular momentum
44.8 = (51.2 + 230.4)ωf
ωf = 0.15909090...
The hot sun beating down on the grass is hot because the grass aborbs the heat from the sun
Merry Christmas!!!
-Kaden&Sydney
Around the nucleus or in the shell of the atom. Hope this makes sense.