Answer:
I think it is the 3 option
Integrating the velocity equation, we will see that the position equation is:
<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:
To get the position equation we just need to integrate the above equation:
Then:
Replacing that in our integral we get:
Where C is a constant of integration.
Now we remember that
Then we have:
To find the value of C, we use the fact that f(0) = 0.
C = -1 / 3
Then the position function is:
Integrating the velocity equation, we will see that the position equation is:
To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
Answer:
<em>It matters because crystalline and amorphous materials have different properties. The arrange affects the melting point (defined in crystals and a larger range in amorphous) and shape (geometrical in crystals, no geometrical in amorphous). </em>
Explanation:
The particles that compose a solid material are held in place by strong tractive forces between them when we analyze solids we consider the position of the atoms (molecules or ions) rather than their motion (which is important in liquids and gases). This positioning can be arranged in two general ways:
- Crystalline solids have internal structures that in turn lead to distinctive flat surfaces or face, these faces intersect at angles that are characteristic of the substance, crystals tend to have sharp, well defined and high melting points because of the same distance from the same number and type of neighbors. They generally have geometric shapes, some examples are diamonds, metals, salts.
- Amorphous solids produce irregular or curved surfaces when broken and they have poorly defined patterns when exposed to x rays because of their irregular array. In contrast with crystal solids, amorphous solids soften over a wide temperature range due to the different amounts of thermal energy needed to overcome different interactions. Some examples of these solids are gels, plastics, and some polymers.
I hope you find this information useful and interesting! Good luck!