Given that the density of heptane is
The mass of heptane is
The density of water is
The mass of water is
The volume of heptane will be
The volume of water will be
Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.
The total volume of liquid in the cylinder will be
The total volume of liquid in the cylinder will be 82.32 mL.
Answer:
Acid mine drainage is dissolved toxic materials wash from mines into nearby lakes and streams.
Explanation:
Acid mine drainage is the flow of acidic water with pH typically between 2 and 4, and high concentrations of other dissolved toxic materials from mines into nearby lakes and streams. It mainly occurs during metal sulfide mining, when the metal sulfide ore such as pyrite (FeS2) is exposed to water and oxygen from air to produce soluble iron and sulfuric acid.
Microorganisms, especially acidophile bacteria like Acidithiobacillus ferrooxidans grow by pyrite oxidation, i.e., oxidizing the Fe²⁺ in pyrite to Fe³⁺, which again react with pyrite and water to produce sulfuric acid. Then the acidic water flows into nearby water sources and reduces the pH value of water in those sources. As a result, heavy metals such as copper, lead, mercury, etc in other mineral ores also get dissolved into the water. The action of acidophile bacteria also increases the rate and degree of acid-mine drainage process.
The acid mine drainage causes water pollution and adversely affect the aquatic plants and animals. It also results in the contamination of drinking water, corrosion of infrastructures such as bridges, etc.
For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.
For any object thrown upwards where only the force of gravity is acting upon it, uses the following formula for the maximum height attained.
H= v²/2g, where g = 9.81 m/s²
There are two information of velocities are given. However, we use the 20 m/s information because this is the launch velocity. Hence, the solution is as follows:
H = (20 m/s)²/2(9.81 m/s²)
<em>H = 20.4 m</em>
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>