Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:
You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:
you replace this value of v in the equation (1). Also, you replace the values of r and m:
hence, the tension in the string must be T = Fc = 764.41 N
Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V
Therefore, the resistance that will provide this potential drop is 388.89 ohms.
Answer:
Explanation:
heat lost by water will be used to increase the temperature of ice
heat gained by ice
= mass x specific heat x rise in temperature
1 x 2090 x t
heat lost by water in cooling to 0° C
= mcΔt where m is mass of water , s is specific heat of water and Δt is fall in temperature .
= 1 x 2 x 4186
8372
heat lost = heat gained
1 x 2090 x t = 8372
t = 4°C
There will be a rise of 4 degree in the temperature of ice.
To develop this problem it is necessary to apply the oscillation frequency-related concepts specifically in string or pipe close at both ends or open at both ends.
By definition the oscillation frequency is defined as
Where
v = speed of sound
L = Length of the pipe
n = any integer which represent the number of repetition of the spectrum (n)1,2,3...)(Number of harmonic)
Re-arrange to find L,
The radius between the two frequencies would be 4 to 5,
Therefore the frequencies are in the ratio of natural numbers. That is
Here f represents the fundamental frequency.
Now using the expression to calculate the Length we have
Therefore the length of the pipe is 1.3m
For the second harmonic n=2, then
Therefore the length of the pipe in the second harmonic is 2.6m
<h2>
Answer: Heat transfer by radiation</h2>
Explanation:
There are three ways in which the thermal transfer (heat) occurs:
1. By Conduction, when the transmission is by the <u>direct contact.</u>
2. By Convection, heat transfer<u> in fluids</u> (like water or the air, for example).
3. By <u>Radiation</u>, by the electromagnetic waves (they can travel through any medium and in vacumm or empty space)
Since outter space is vacuum (sometimes called "empty"), energy cannot be transmitted by convection, nor conduction. It must be transmitted by electromagnetic waves that are able to travel with or without a medium.