please mark brainliest
Explanation:
Let the east direction to be i^ and north direction be j^.
Thus displacement of the man S=8i^+6j^
So, magnitude of displacement ∣S∣=62+82=100=10 m
(1.9 yr) x (365.24 day/yr) x (86,400 sec/day) x (10⁹ nsec/sec)
= (1.9 x 365.24 x 86,400 x 10⁹) nanosec
= 6.00 x 10¹⁶ nanoseconds
Answer:
The magnitude of the force, B = 5 Tesla, Up (North) direction
Explanation:
Magnetic force F= Eq where Electric field, E = 750 NC
and charge, q = -70 μC = -7 ×C
F = 750 × -7 ×
F = 0.0525
But F = qvB; B =
where B is the magnetic field
= 0.0525 ÷ ( -7 × × 30)
B = 5.0 Teslas
The force on a negative charge is in exactly the opposite direction to that on a positive charge.
Hence the direction of the charge is up (North).
The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
To find the answer, we need to know about the time of flight and range of projectile motion.
<h3>What's the expression of range of a projectile motion?</h3>
- Range = U²× sin(2θ)/g
- U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
- U=√{Range×g/sin(2θ)}
- Here, range= 2.20m, = 36.5°
- U= √{2.20×9.8/sin(73)}
U= √{2.20×9.8/sin(73)} = 22.5m/s
<h3>What's the expression of time of flight in projectile motion?</h3>
- Time of flight= (2×U×sinθ)/g
- So, T= (2×22.5×sin36.5°)/9.8
= 2.73 s
Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
Learn more about the range and time period of projectile motion here:
brainly.com/question/24136952
#SPJ1
Glucose is a simple sugar.
Its chemical formula is C₆ H₁₂ O₆ .
That tells you that every glucose molecule is made of 6 atoms of carbon,
12 atoms of hydrogen, and 6 atoms of oxygen.