Answer: The two answers are the machine will require an input greater than 100 ft.-lbs. And the other is The machine may accomplish the task faster than manual work.
Hope this help :3
Answer:
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Explanation:
Given;
Initial length L1 = 1.2m
Initial temperature T1 = 27°C
Final temperature T2 = 0.0°C
Linear expansion coefficient of brass x = 1.9 × 10^-5 /°C
The change i length ∆L;
∆L = L2 - L1
L2 = L1 + ∆L ...........1
∆L = xL1(∆T)
∆L = xL1(T2 - T1) ......2
Substituting the given values into equation 2;
∆L = 1.9 × 10^-5 /°C × 1.2m × (0 - 27)
∆L = 1.9 × 10^-5 /°C × 1.2m × (- 27)
∆L = -6.156 × 10^-4 m
From equation 1;
L2 = L1 + ∆L
Substituting the values;
L2 = 1.2 m + (- 6.156 × 10^-4 m)
L2 = 1.2 m - 6.156 × 10^-4 m
L2 = 1.1993844 m
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Answer:
Explanation:
wave length of light λ = 502 nm
screen distance D = 1.2 m
width of one fringe = 10.2 mm / 20
= .51 mm
fringe width = λ D / a , a is separation of slits
Puting the values given
.51 x 10⁻³ = 502 x 10⁻⁹ x 1.2 / a
a = 502 x 10⁻⁹ x 1.2 / .51 x 10⁻³
= 1181.17 x 10⁻⁶ m
1.18 x 10⁻³ m
= 1.18 mm .
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2