Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
<span>A moving electrical charge produces a magnetic field and a moving magnetic field produces an electrical field. An electromagnet works by coiling a bunch of wire and spinning a couple of magnets around that wire at high speeds. When this occurs the magnets induce an electric current in the wire and hence the electricity production. Once the magnets stop spinning, the induced electrical field dissipates and the current stops flowing through the wire.
</span>
Jupiter i hope it is right answer
Answer:
v = 54 m/s
Explanation:
Given,
The maximum height of the flight of golf ball, h = 150 m
The velocity at height h, u = 0
The velocity of the golf ball right before it hits the ground, v = ?
Using the III equations of motion
<em> v² = u² + 2gh</em>
Substituting the given values in the above equation,
v² = 0 + 2 x 9.8 x 150 m
= 2940
v = 54 m/s
Hence, the speed of the golf ball right before it hits the ground, v = 54 m/s
Answer: False
Explanation:
Relative to the concept of radiations, a black body is an object capable of absorbing any form of electromagnetic radiation irrespective of its frequency or angle of incidence when incident on such object.
However, the same cannot be said about real bodies as real bodies are those which reflect all rays incident on them completely and uniformly in all directions.
One very important characteristic of black bodies is that they are ideal emmiters.
The concept of emmisivity is brought about by the existence of real bodies .
This is due to the fact that they are only able to emit radiation at a fraction of the black body energy levels.
Please note that by convention, the emmisivity of a real body is always less thaan 1.
As such they are not able to emit as much radiation as a black body at the same temperature.