INCREASE in temperature of the material practically increase the energy of the particles. which increases their motion due to increase in energy . thus when the temperature is decreased the energy level decreases which causes the particle's motion to slow down.. the motion of the particle is highly reduced when the temperature is lowered
The precision (relative error) of the centripetal force is 1%.
<h3>Relative error</h3>
This is the error in measurement of a variable obtained in comparison with other variables.
F = mv²/r
where;
- F is centripetal force
- m is mass
- v is velocity
- r is radius
F/m = v²/r
F/m = (0.01v)²/(0.01r)
F/m = 0.01v²/r
F/m = 1%(v²/r)
Thus, the precision (relative error) of the centripetal force is 1%.
Learn more about relative error here: brainly.com/question/13370015
3.4814815 (or 3 13/27) m/s
speed = distance/time
3.4814815 (or 3 13/27) = 94/27
Answer:B
Explanation:
Galilean transformation are only approximately correct,while Lorentz transformation are more exact
Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position