<h3>
Answer:</h3>
915 Joules
<h3>
Explanation:</h3>
- The heat of fusion is the heat that is required to convert a given mass of a substance from solid state to liquid state without change in temperature.
- In this case, we are given specific heat of a substance as 122 joules per gram
- It means that amount of heat equivalent to 122 joules is required to change 1 gram of the substance from solid state to liquid state.
- Therefore, we can determine the amount of heat needed to change 7.5 grams of the substance from solid to liquid state.
1 g = 122 Joules
7.5 g = ?
= 122 × 7.5
= 915 Joules
Thus, 7.5 g of the substance at its melting point will require 915 Joules of heat to melt.
The bond angles a and b are 120° respectively. The bond angle c is 111.4° .while the bond angle d is 120°. The bond angles e and f are 120° respectively.
In the carbonate ion, all the bond angles and bond lengths are equal hence three equivalent resonance structures can be drawn for the ion. All the bond angles, ( a and b) in carbonate ion all have bond angle of 120°.
The bond angle marked c in OCCl2 has a bond angle 111.4°, the bond angle marked d in the compound has the bond angle, 120°.
There are three bond angles present in the nitrate (NO3-) ion. Three resonance structures contribute to this bond. Based on these structures, the bond angles e and f in the molecule is 120°.
Learn more: brainly.com/question/20339399
By considering the reaction equation is:
5Br(aq)+BrO3(aq)+6H(aq)= 3Br2(aq)+3H2O(l)
when the average rate of consumption of Br = 1.86x10^-4 m/s
So from the reaction equation
5Br → 3Br2 when we measure the average rate of formation (X) during the same interval So,
∴ 1.86x10^-4/5 = X / 3
∴X = 1.1 x 10^-4 m/s
∴the average rate of formation of Br2 = 1.1x10^-4 m/s
Your answer is 2 goes to the right and twice to the left
The heat released by the water when it cools down by a temperature difference AT
is Q = mC,AT
where
m=432 g is the mass of the water
C, = 4.18J/gºC
is the specific heat capacity of water
AT = 71°C -18°C = 530
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
Q = (4329)(4.18J/9°C)(53°C) = 9.57. 104J
and this is the amount of heat released by the water.