We use the formula,
Here, h is the variable represents the height of the flare in feet when it returns to the sea so, h = 0 and u is the initial velocity of the flare, in feet per second and its value of 192 ft/sec.
Substituting these values in above equation, we get
.
Here, t= 0 neglect because it is the time when the flare is launched.
Thus, flare return to the sea in 12 s.
Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²
Answer:
Part a)
Mass of m2 is given as
Part b)
Angular acceleration is given as
Part c)
Tension in the rope is given as
Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here
Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1
also we have
now we have
so angular acceleration is given as
Part c)
Tension in the rope is given as
Randall has unconscious assumption that attractive people are more competent
Answer:
4 m/s² down
Explanation:
We'll begin by calculating the net force acting on the object.
The net force acting on the object from the left and right side is zero because the same force is applied on both sides.
Next, we shall determine the net force acting on the object from the up and down side. This can be obtained as follow:
Force up (Fᵤ) = 15 N
Force down (Fₔ) = 25 N
Net force (Fₙ) =?
Fₙ = Fₔ – Fᵤ
Fₙ = 25 – 15
Fₙ = 10 N down
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Mass (ml= 2.5 Kg
Net force (Fₙ) = 10 N down
Acceleration (a) =?
Fₙ = ma
10 = 2.5 × a
Divide both side by 2.5
a = 10 / 2.5
a = 4 m/s² down
Therefore, the acceleration of the object is 4 m/s² down