Answer:
a) -29.4 ≤ p ≤ 29.2
b) 4 months
Step-by-step explanation:
dp/dt = p(10 - 1 - 10 - 7p) = p(- 1 - 7p) = -p - 7p²
p = ∫(-p - 7p²)dt = -tp - 7tp² ----------- (1)
For p(0) = 6000
Hence, dp/dt = 0
∴ -p - 7p² = 6000
7p² + p + 6000 = 0
Using the formular, p = -b±√b² - 4ac/2a, where, a = 7; b = 1; c = 6000
p = -1±√1 - 4(7)(6000)/2*7 = -1±√-167999/14 =
p = -1±(- 409.88)/14= -410.88/14 or 408.88/14 = -29.4 or 29.2
∴ The limiting value of the population:
-29.4≤ p ≤ 29.2
b) When p = -29.4/2 or 29.2/2 = ±15
From (1), we have it that, 7tp² + tp = 6000
By substituting the value, p = -15
7t(-15)² - 15t = 6000
1575t - 15t = 6000
∴ t = 6000/1590 = 3.77
It wiil take close to 4 months for the population to be equal to one - haif of the limiting value