Answer:
(a) See below
(b) 103.935 °F; 102.235 °F
Explanation:
The equation relating the temperature to time is
1. Calculate the thermometer readings after 0.5 min and 1 min
(a) After 0.5 min
(b) After 1 min
2. Calculate the thermometer reading after 2.0 min
T₀ =106.321 °F
ΔT = 100 - 106.321 °F = -6.321 °F
t = t - 1, because the cooling starts 1 min late
3. Plot the temperature readings as a function of time.
The graphs are shown below.
Answer:
760 mmHg
Explanation:
Step 1: Given data
- Partial pressure of nitrogen (pN₂): 592 mmHg
- Partial pressure of oxygen (pO₂): 160 mmHg
- Partial pressure of argon (pAr): 7 mmHg
- Partial pressure of the trace gas (pt): 1 mmHg
Step 2: Calculate the atmospheric pressure
Since air is a gaseous mixture, the atmospheric pressure is equal to the sum of the gases that compose it.
P = pN₂ + pO₂ + pAr + pt = 592 mmHg + 160 mmHg + 7 mmHg + 1 mmHg = 760 mmHg
Answer:
823.7g
Explanation:
Using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
Using the information given in this question as follows:
Q = 6,400 J
m = ?
c of soil = 0.840 J/g°C
∆T = 9.25°C
Using Q = mc∆T
m = Q ÷ c∆T
m = 6,400 ÷ (0.840 × 9.25)
m = 6400 ÷ 7.77
m = 823.7g
Answer:
Mendeleev had left the noble gases out of his periodic table.
Explanation:
Mendeleev's periodic table is pictured in the image attached to the question.
Mendeleev's table obviously lacked the noble gases. The reason for this grave omission is simple; the noble gases were not known as at the time when he formulated his periodic table. There weren't any known elements whose properties were similar to the properties of the noble gases. This would have lead him to suspect their existence.