RADIATION. Radio waves, microwaves, IR, light, UV, x-rays, GAMMA waves etc are ALL Electromagnetic radiation. The difference between ALL the above is the frequency, I.E. The number of waves per second. The higher the frequency the more energy.
when we convert 32.5 lb/in² to atmosphere, the result obtained is 2.21 atm
<h3>Conversion scale</h3>
14.6959 lb/in² = 1 atm
<h3>Data obtained from the question</h3>
- Pressure (in lb/in²) = 32.5 lb/in²
- Pressure (in ATM) =?
<h3>How to convert 32.5 lb/in² to atm</h3>
14.6959 lb/in² = 1 atm
Therefore
32.5 lb/in² = 32.5 / 14.6959
32.5 lb/in² = 2.21 atm
Thus, 32.5 lb/in² is equivalent to 2.21 atm
Learn more about conversion:
brainly.com/question/2139943
#SPJ1
Answer:
11.9 g of nitrogen monoxide
Explanation:
We'll begin by calculating the number of mole in 6.75 g of NH₃. This can be obtained as follow:
Mass of NH₃ = 6.75 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 6.75 / 17
Mole of NH₃ = 0.397 mole
Next, we shall determine the number of mole of NO produced by the reaction of 0.397 mole of NH₃. This can be obtained as follow:
4NH₃ + 5O₂ —> 4NO + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Therefore, 0.397 mole of NH₃ will also react to produce 0.397 mole of NO.
Finally, we shall determine the mass of 0.397 mole of NO. This can be obtained as follow:
Mole of NO = 0.397 mole
Molar mass of NO = 14 + 16 = 30 g/mol
Mass of NO =?
Mass = mole × molar mass
Mass of NO = 0.397 × 30
Mass of NO = 11.9 g
Thus, the mass of NO produced is 11.9 g
Molar mass NO₂ = 46.0 g/mol
1 mole -------- 46.0 g
2.0 moles ----- ?
Mass (NO₂) = 2.0 x 46.0 / 1
=> 92.0 g
hope this helps!