Answer:
C) 35%
Explanation:
Thymine pairs with adenine. If thymine is 15% then so would adenine be 15%. That leaves the reaminder to be 70%. Cytosine pairs with guanine, thereby, they would each be 35%.
Answer:
V₂ = 45.53 L
Explanation:
Given data:
Initial temperature = 850 K
Initial volume = 65 L
Initial pressure = 450 KPa
Final temperature = 430 K
Final pressure = 325 KPa
Final volume = ?
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 450 KPa× 65 L × 430 K / 850 K × 325KPa
V₂ = 12577500 KPa .L. K / 276250 K. KPa
V₂ = 45.53 L
Answer:
A. fluorine, 1.79 moles
Explanation:
Given parameters:
Mass of carbon = 87.7g
Mass of fluorine gas = 136g
Unknown:
The limiting reactant and the maximum amount of moles of carbon tetrafluoride that can be produced = ?
Solution:
Equation of the reaction:
C + 2F₂ → CF₄
let us find the number of the moles the given species;
Number of moles =
C; molar mass = 12;
Number of moles = = 7.31moles
F; molar mass = 2(19) = 38g/mol
Number of moles = = 3.58moles
So;
From the give reaction:
1 mole of C requires 2 moles of F₂
7.31 moles of C will then require 2 x 7.31 moles of F₂ = 14.62moles
But we have 3.58 moles of the F₂;
Therefore, the reactant in short supply is F₂ and it is the limiting reactant;
So;
2 moles of F₂ will produce mole of CF₄
3.58 moles of F₂ will then produce = 1.79moles of CF₄
Answer:
Number of moles = 0.92 mol
Explanation:
Given data:
Mass of CaSO₄ = 125 g
Number of moles of CaSO₄ = ?
Solution:
Formula:
Number of moles = mass/ molar mass
Molar mass of CaSO₄:
Molar mass of CaSO₄ = 40 + 32+ 16×4
Molar mass of CaSO₄ = 40 + 32+ 64
Molar mass of CaSO₄ = 136 g/mol
Number of moles:
Number of moles = mass/ molar mass
Number of moles = 125 g/ 136 g/mol
Number of moles = 0.92 mol