Answer:
The correct answer is - B. dissolving → evaporation filtration → crystallisation
Explanation:
The method of the preparation of a pure sample of copper(II) sulfate from dilute sulfuric acid and copper II oxide is given as follows:
step 1. Adding dilute sulfuric acid into a beaker. Using bunsen burner heat the beaker.
step 2. Adding the copper (II) oxide into the beaker and give it a little time at a time to the warm dilute sulfuric acid and stir
step 3. Filtering the mixture into an evaporating vessel to remove the excess copper (II) oxide and water from the filtrate.
Step 4. leave the rest filtrate to crystallize.
Copper (II) Oxide {CuO (s)} + Dilute Sulfuric Acid {H2SO4 (aq)} → Copper (II) Sulphate {CuSO4 (s)} + Water {H2O}
Answer:
The molecule has a bent geometry
Explanation:
Let us look again at the principles of VSEPR theory. The shape of a molecule depends on the number of electron pairs that surround the valence shell of the central atom in the molecule.
Lone pairs distort the molecular geometry away from what is expected on the basis of VSEPR theory.
The molecule described in the question has the form AEX2. Two substituents and one lone pair form three electron domains around the central atom. The expected geometry is trigonal planar but the observed molecular geometry is bent because of the lone pairs present.
I think it's call a magnet
The bacteria in nasty environment undergoes multiple fission.
<h3><u>Explanation</u>:</h3>
The bacteria is a unicellular prokaryotic organisms that are found in each and every places of the world. They can survive in extremes of temperatures and pH. They can save themselves through special processes in the extreme climates.
The bacteria undergoes multiple fission in these climates. They cover themselves up with a strong and tough capsule inside which they undergo several Binary fissions. This leads to the formation of multiple cells enclosed with a capsule.
With the return of the favourable climate, the capsule rupture and these newly formed cells come out.