Where's the image?
please enter a image below so I can help.
The correct answer is - False.
The soils are part of most of the major cycles that take place on the Earth, mainly because they are in touch with the other spheres. The carbon dioxide, as well as the nitrogen and the sulfur cycles too, end up in the soil in more cases than not during their cycles. While some are formed in it and than released, like the sulfur, the carbon mostly gets in it though the roots of the plants, as well as the decomposing organisms, and the nitrogen ends up in the soil with the water.
The soil is one of the most important pieces in the cycles of most of the gases on Earth, and without it, some will not even be possible.
Answer:
Taste bufs
Explanation:
May be teenager or adult is the most probable answer because teenager and adult are fully developed species of human so they can have most sensitive taste bud
PLEASE MARK ME BRAINLIEST IF MY ANSWER IS CORRECT
Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:
where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:
<span>The best answer is B. ICl experiences induced dipole-induced dipole interactions. Both iodine and chlorine belongs to the same group of the periodic table. Electronegativity decreases as you go down a group therefore Cl will have a greater attraction with the bond it forms with another atom. Dipole-dipole interactions form between I and Cl. For the Br2 molecule, no dipole occurs because they are two identical atoms. Therefore we will be expecting ICl will have a higher boiling point due to higher binding energy it forms.</span>