<u>Answer:</u> The standard free energy change of formation of is 92.094 kJ/mol
<u>Explanation:</u>
We are given:
Relation between standard Gibbs free energy and equilibrium constant follows:
where,
= standard Gibbs free energy = ?
R = Gas constant =
T = temperature =
K = equilibrium constant or solubility product =
Putting values in above equation, we get:
For the given chemical equation:
The equation used to calculate Gibbs free change is of a reaction is:
The equation for the Gibbs free energy change of the above reaction is:
We are given:
Putting values in above equation, we get:
Hence, the standard free energy change of formation of is 92.094 kJ/mol
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g
2KClO3 --> 2KCl + 3O2
3 moles of oxygen are produced when 2 mol of potassium chlorate (KClO3) decompose.
Answer:
An element is atoms with the same number of protons.
Explanation:
Protons, electrons, and neutrons.