The answer for this would be B!!
The correct answer is :
Unit vectors I and j along the x-axis and y-axis, respectively, define the Cartesian coordinate system. The radial unit vector r, which indicates the direction from the origin, and the unit vector t, which is orthogonal (perpendicular) to the radial direction, together create the polar coordinate system.
We can obtain the horizontal component by applying the trigonometric identity of Cos(Ф), and if we obtain the component on the x axle, such as 22000 (m)×Cos(51°) = x, we may determine that x = 13845.05 metres. We need to obtain the vector components because we already know the distance and the angle.
To learn more about Cartesian unit-vector refer the link:
brainly.com/question/26776558
#SPJ9
For a photographer that wishes to determine the color of light that he can use in a dark room that will not expose the films he is processing, having used a Blue Incandescent bulb, he should proceed to use a Red Incandescent bulb for the next trial.
The photographer in question is performing an experiment. For these kinds of experiments it is important to identify the variables present, which can be of three kinds:
- Control variables
- Dependent variables
- Independent variables
For this experiment, the dependent variable is the exposure of the light onto the films, given that this is what we wish to measure. The independent variable will be the color of the light being used which is what will affect the dependent variable.
The remaining variable must be the control variable. Unlike the previous variables, we can have more than one of these. The control variable is there to make sure that only the dependent variable is affecting the outcome. We do this by keeping the control variable the same through each trial, which is why the photographer should not change the type of bulb in the second experiment, changing only the color of the light.
To learn more visit:
brainly.com/question/1549017?referrer=searchResults
The new gravitation force at the new location is 40 N
Explanation:
The weight of the astronaut is given by the equation
(1)
where
m is the mass of the astronaut
g is the acceleration of gravity
The acceleration of gravity at a certain distance from the centre of the Earth is given by
where G is the gravitational constant and M is the Earth's mass. So we can rewrite eq.(1) as
When the astronaut is on the Earth's surface, (where R is the Earth's radius), so his weight is
Later, he moves to another location where his distance from the Earth's surface is 3 times the previous distance, so the new distance from the Earth's centre is
Therefore, the new weight is
Which means that his weight has decreased by a factor 16: therefore, the new weight is
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:The potential energy is zero
Explanation: