All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term <em>a</em> and common ratio |<em>r</em>| < 1. Then the <em>n</em>-th partial sum (the sum of the first <em>n</em> terms) of the sequence is
Multiply both sides by <em>r</em> :
Subtract the latter sum from the first, which eliminates all but the first and last terms:
Solve for :
Then as gets arbitrarily large, the term will converge to 0, leaving us with
So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18
Is there a table? Can you attach a picture of it?
Answer:
(f - g)(x) = -x² + 3x + 5
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
- Function Notation
- Combining Like Terms
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 3x + 5
g(x) = x²
(f - g)(x) is f(x) - g(x)
<u>Step 2: Find (f - g)(x)</u>
- Substitute: (f - g)(x) = 3x + 5 - x²
- Rewrite: (f - g)(x) = -x² + 3x + 5
Answer:
0.0537
Step-by-step explanation:
This follows a binomial distribution with : n
Number of trials 'N' = 12 ; Probability of success (difference between speakers) 'p' = 1/2 or 0.5 ; Probability of failure (no difference b/w speakers) = 1/2 or 0.5 ; No of success 'r' = 3
P (X = 3) =
= 12C3 (0.5)^3 (0.5)^9
0.0537