The number of grams of Cl2 formed when 0.385 mol HCl reacts with an excess of O2 is 13.6675 g.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 × of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
Given data:
Moles of hydrochloric acid = 0.385 mol
Mass of chlorine gas =?
Chemical equation:
4HCl + O₂ → 2Cl₂ + 2H₂O
Now we will compare the moles of Cl₂ with HCl.
HCl : Cl₂
4 : 2
0.385 : 2÷4× 0.385 = 0.1925 mol
Oxygen is present in excess that's why the mass of chlorine produced depends upon the available amount of HCl.
Mass of Cl₂ :
Mass of Cl₂ = moles × molar mass
Mass of Cl₂ =0.1925 mol × 71 g/mol
Mass of Cl₂ = 13.6675 g
Hence, the number of grams of Cl2 formed when 0.385 mol HCl reacts with an excess of O2 is 13.6675 g.
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
The question is missing the data sets.
This is the complete question:
A single penny has a mass of 2.5 g. Abbie and James
each measure the mass of a penny multiple times. Which statement about
these data sets is true?
O Abbie's measurements are both more accurate
and more precise than James'.
O Abbie's measurements are more accurate,
but less precise, than James'.
O Abbie's measurements are more precise,
but less accurate, than James'.
O Abbie’s measurements are both less
accurate and less precise than James'.
Penny masses (g)
Abbie’s data
2.5, 2.4, 2.3, 2.4, 2.5, 2.6, 2.6
James’ data
2.4, 3.0, 3.3, 2.2, 2.9, 3.8, 2.9
Answer: first option, Abbie's measurements are both more accurate
and more precise than James'.
Explanation:
1) To answer this question, you first must understand the difference between precision and accuracy.
<span>Accuracy is how close the data are to the true or accepted value.
</span>
<span>Precision is how close are the data among them, this is the reproducibility of the values.</span>
Then, you can measure the accuracy by comparing the means (averages) with the actual mass of a penny 2.5 g.
And you measure the precision by comparing a measure of spread, as it can be the standard deviation.
2) These are the calculations:
Abbie’s data
Average: ∑ of the values / number of values
Average = [2.5 + 2.4 + 2.3 + 2.4 + 2.5 + 2.6 + 2.6 ] / 7 = 2.47 ≈ 2.5
Standard deviation: √ [ ∑ (x - mean)² / (n - 1) ] = 0.11
James’ data
Average = [2.4 + 3.0 + 3.3 + 2.2 + 2.9 + 3.8 + 2.9] / 7 = 2.56 ≈ 2.6
Standard deviation = 0.53
3) Conclusions:
1) The average of Abbie's data are closer to the accepted value 2.5g, so they are more accurate.
2) The standard deviation of Abbie's data is smaller than that of Jame's data, so the Abbie's data are more precise.
Answer:
i'm pretty sure it's beryllium
Explanation:
Point f because that is when it starts going down