Answer: 115.2kg
Explanation:
Net force = 265 N
Acceleration of bike & rider = 2.30m/s2 (The SI unit of acceleration is m/s2)
Mass of the bike and rider together = ?
Since force is the product of the mass of an object and the acceleration by which it moves, Force = Mass x Acceleration
265N = Mass x 2.30m/s2
Mass = (265N/2.30m/s2)
Mass = 115.2 kg
Thus, the Mass of the bike and rider together is 115.2kg
The object's velocity is decreasing.
Explanation:
From graph is the attached image, we can clearly point that the velocity of this motion is decreasing with time.
Velocity is a vector quantity.
- The y-axis represent displacement.
- The x-axis depicts time
- Using the graph, we know that the slope of the line on the graph gives us the velocity as it denotes the change of displacement with time.
- When we find the slope, it will give us a negative value which shows that the body is slowing down and not increasing speed.
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
True, the law of inertia effects both moving and non-moving objects.
Light energy is defined as how nature moves energy at an extremely rapid rate, and it makes up about 99% of the body's atoms and cells, and signal all body parts to carry out their respective tasks. An example of light energy is the movement of a radio signal.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.