<span>The correct answer should be B) 63.55. That's because the most precise number is 63.546, but you would write 55 because 46 is rounded that way in the equation. The others are a bit higher, while E is a completely different element, Iodine. This isn't the most precise piece of data because in reality there would be a slight differentiation of +- 0,003u</span>
Answer:
magnitude of the magnetic field 0.692 T
Explanation:
given data
rectangular dimensions = 2.80 cm by 3.20 cm
angle of 30.0°
produce a flux Ф = 3.10 × Wb
solution
we take here rectangular side a and b as a = 2.80 cm and b = 3.20 cm
and here angle between magnitude field and area will be ∅ = 90 - 30
∅ = 60°
and flux is express as
flux Ф = .................1
and Ф = BA cos∅ ............2
so B =
and we know
A = ab
so
B = ..............3
put here value
B =
solve we get
B = 0.692 T
If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.