There is no movement in line C and the greatest velocity occurs at line D. The answers are:
1. 0.5 m/s
2. 0.25 m/s
3. 14m and -2m
4. -1 m/s
<h3>
What is Position - time Graph ?</h3>
Position time graph is the graph of distance or displacement against time. The slope of the graph is velocity.
The given positions of four objects as a function of time are shown
on the graph to the right.
1.) The velocity of object A will be the slope m of the line A.
Slope m = Δx / Δt
m = (4 - 0) / (8 - 0)
m = 4 / 8
m = 0.5 m/s
Velocity at A = 0.5 m/s
2.) The average velocity of object B will be the slope m of the line B.
Slope m = Δx / Δt
m = (6 - 4) / (8 - 0)
m = 2 / 8
m = 0.25 m/s
The average velocity of object B is 0.25s
3.) The object moved a total distance during the first eight seconds will be 4m for A, 2m for B, and 8m for D
Total distance = 4 + 2 + 8 = 14m
It’s net displacement during the same time will be 2. That is,
Displacement = 8 - 6 = -2m
4.) The greatest speed occurred at line D. The velocity of the object moving at the greatest speed will be the slope of the line D
V = -Δx / Δt
V = -8/8
V = -1 m/s
Therefore, there is no movement in line C and the greatest velocity occurs at line D.
Learn more about velocity time graph here :brainly.com/question/769606
#SPJ1
Answer:
Sun
Explanation:
Any asteroid in space is a celestial body. Classification of Celestial Bodies. A star is a form of a celestial object made up of a shining spheroid of plasma held together by its own gravity. The nearby star to Earth is the Sun.
<u>Explanation:</u>
Reaction quotient is defined as the ratio of the concentration of the products and reactants of a reaction at any point of time with respect to some unit. It is represented by the symbol <em>Q</em>.
The ratio of the concentration of products and reactants of a reaction in equilibrium with respect to some unit is said to be equilibrium constant expression. It is represented by the symbol <em>K</em>.
The relationship between Gibbs free energy change and reaction quotient of the reaction is:
......(1)
where,
= Gibbs free energy change
= Standard Gibbs free energy change
R = Gas constant
T = Temperature
At equilibrium, the free energy change of the reaction becomes 0 and standard Gibbs free energy change can be related to the equilibrium constant by the equation:
...(2)
The gravitational force is inversely proportional to the
square of the distance between their centers. So the
force is greatest when the distance is zero.
Answer:
#_photons = 30 photons / s
Explanation:
Let's start by finding the energy of a photon of light, let's use the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
we substitute
E = h c /λ
E₀ = 6.63 10⁻³⁴ 3 10⁸/500 10⁻⁹
E₀ = 3.978 10⁻¹⁹ J
now let's use a direct proportion rule. If the energy of a photon is Eo, how many fornes has an energy E = 1.2 10⁻¹⁷ J in a second
#_photons = 1 photon (E / Eo)
#_photons = 1 1.2 10⁻¹⁷ /3.978 10⁻¹⁹
#_photons = 3.0 10¹
#_photons = 30 photons / s