Answer:
Explanation:
DescriptionA biological system is a complex network of biologically relevant entities. Biological organization spans several scales and are determined based different structures depending on what the system is. Examples of biological systems at the macro scale are populations of organisms.
1. Cell starts into mitosis phase of the cell cycle.
2. Helicase begins to break the hydrogen bonds between the nitrogen bases. (The double helix has to be unwound in order to expose the nucleotides)
3. DNA polymerase attach the free-floating nucleotides to the exposed nitrogen bases. (this allows a new DNA strand to be made on the existing one)
4. Free floating nucleotides pair up with exposed nitrogen bases (this is what really builds the new strand, based around the template strand)
5. Two new molecules of DNA are created
Statements:
Adenine
Cytosine (Car in the Garage, Apple in a Tree is a good trick to know how they pair)
DNA
Replication
Double helix
Answer:
precession
Explanation:
The orbit isn’t the simple ellipse, rather it is one that moves a little, loop after loop. This motion is called precession, and you may have heard about it when astronomers talk about the precession of the orbit of Mercury
Protein microarrays, an emerging class of proteomic technologies, are fast becoming critical tools in biochemistry and molecular biology. Two classes of protein microarray are currently available: analytical and functional protein microarrays. Analytical protein microarrays, most antibody microarrays, have become one of the most powerful multiplexed detection technologies. Functional protein microarrays are being increasingly applied to many areas of biological discovery, including studies of protein interaction, biochemical activity, and immune responses. Great progress has been achieved in both classes of protein microarrays in terms of sensitivity, specificity, and expanded application.