Answer:
The answer is B. 28.
Step-by-step explanation:
Did the test and got it correct! PLEASEEE BRAINLIEST
Answer:
True
Step-by-step explanation:
The answer to 8a. is 17, the answer to 8b. is 3.9, the answer to 8c. is 1 / 2, the answer to 8d. is 7 7 / 8, the answer to 9a. is commutative property, the answer to 9b. is multiplicative identity property, the answer to 9c. is associative property, and the answer to 9d. is additive inverse property.
Regarding the whole "explain using mental math" thing, I pretty much just used the fact that 8a. and 8b. both had the same number of decimal places. For 8c., I just made each number have a denominator of 10. And last, for 8d., all of the denominators were already the same, which made it pretty easy. I apologize for this section of my answer being so informal lol, I haven't had to do these kinds of problems in like 5 years <span />
<span>
6 Find an exact value. sin 75°
</span>sin(A+B)=sin(A)cos(B)+cos(A)sin<span>(B)
</span>sin(45)=cos(45)=(2^0.5)/2 sin(30)=0.5 cos(30)=(3^0.5)/2
sin(45+30)=sin(45)cos(30)+cos(45)sin(30)=(6^0.5+2^0.5)/4
the answer is the letter d) quantity square root of six plus square root of two divided by four.
<span>
7. Find an exact value. sine of negative eleven pi divided by twelve.
</span>sin(-11pi/12) = -sin(11pi/12) = -sin(pi - pi/12) = -sin(pi/12) = -sin( (pi/6) / 2)
= - sqrt( (1-cos(pi/6) ) / 2) = -sqrt( (1-√3/2) / 2 ) = -(√3-1) / 2√2=(√2-√6)/4
the answer is the letter c) quantity square root of two minus square root of six divided by four.
<span>
8. Write the expression as the sine, cosine, or tangent of an angle. sin 9x cos x - cos 9x sin x
</span>
sin(A−B)=sinAcosB−cosAsinB
sin(9x−x)= sin9xcosx−cos9xsinx= sin(8x)
the answer is the letter c) sin 8x
<span>
9. Write the expression as the sine, cosine, or tangent of an angle. cos 112° cos 45° + sin 112° sin 45°</span>
cos(A−B)=cosAcosB<span>+sinA</span>sinB
cos(112−45)=cos112cos45<span>+sin112</span>sin45=cos(67)
the answer is the letter d) cos 67°
10. Rewrite with only sin x and cos x.
sin 2x - cos 2x
sin2x =
2sinxcosx<span>
cos2x = (cosx)^2 - (sinx)^2 = 2(cosx)^2 -1 = 1- 2(sinx)^2</span>
sin2x- cos2x=2sinxcosx-(1- 2(sinx)^2=2sinxcosx-1+2(sinx)^2
sin2x- cos2x=2sinxcosx-1+2(sinx)^2
<span>
the answer is the letter <span>
b) 2 sin x cos2x - 1
+ 2 sin2x</span></span>