Answer:
6457 + 7925 = 14382
Answer:
15% off
Step-by-step explanation:
We know we paid $25.50 of the original $30. We can divide these two numbers . This is means we paid 85% of the original price. The discount percentage is the remaining percentage from 85 to 100 which is 15. The pants were 15% off.
Answer:
Step-by-step explanation:
Consider the selling of the units positive earning and the purchasing of the units negative earning.
<h3>Case-1:</h3>
- Mr. A purchases 4 units of Z and sells 3 units of X and 5 units of Y
- Mr.A earns Rs6000
So, the equation would be
<h3>Case-2:</h3>
- Mr. B purchases 3 units of Y and sells 2 units of X and 1 units of Z
- Mr B neither lose nor gain meaning he has made 0₹
hence,
<h3>Case-3:</h3>
- Mr. C purchases 1 units of X and sells 4 units of Y and 6 units of Z
- Mr.C earns 13000₹
therefore,
Thus our system of equations is
<u>Solving </u><u>the </u><u>system </u><u>of </u><u>equations</u><u>:</u>
we will consider elimination method to solve the system of equations. To do so ,separate the equation in two parts which yields:
Now solve the equation accordingly:
Solving the equation for x and y yields:
plug in the value of x and y into 2x - 3y + z = 0 and simplify to get z. hence,
Therefore,the prices of commodities X,Y,Z are respectively approximately 1477, 1464, 1437
Answer:
Some of the products do not show the correct powers of x.
D
Answer:
-2.5x-.5
draw the dotted line (3/7)x-3 and shade below it
Step-by-step explanation:
First, we need the slope
Use the slope formula:
so we have
y= -2.5x+b
Solve for b by plugging in coordiantes
-8= -2.5(3)+b
-8= -7.5+b
b= -.5
Put it together and get -2.5x-.5
2.)
A line is parallel to another line if they have the same slope (and different y intercepts)
So in the formula y=mx+b we knowe that m= 2/3
Now it's just a matter of solving for B
plug in the required coordinate to do this
-1=(2/3)*0+b
-1= b
Put it all together to get
3.)
put this into slope intercept form
3x-7y>21
3x-21 > 7y
(3/7)x-3 >y
To graph this just draw a dotted line with the equation (3/7)x-3 and shade everything below it (use de_smos if you're stuck)