This deal is cheap! Well, the answer is 60 cents. To get these problems, divide 10.80 by 18, which is equal to 1.5 a dozen.
Answer
the answer is 76%
Step-by-step explanation:
I did all my equations and showed my work
How many models does the following set have? 5,5,5,7,8,12,12,12,150,150,150
Strike441 [17]
<h3>
Answer: 3 modes</h3>
The three modes are 5, 12, and 150 since they occur the most times and they tie one another in being the most frequent (each occurring 3 times).
Only the 7 and 8 occur once each, and aren't modes. Everything else is a mode. It's possible to have more than one mode and often we represent this as a set. So we'd say the mode is {5, 12, 150} where the order doesn't matter.
Answer:
Ok, as i understand it:
for a point P = (x, y)
The values of x and y can be randomly chosen from the set {1, 2, ..., 10}
We want to find the probability that the point P lies on the second quadrant:
First, what type of points are located in the second quadrant?
We should have a value negative for x, and positive for y.
But in our set; {1, 2, ..., 10}, we have only positive values.
So x can not be negative, this means that the point can never be on the second quadrant.
So the probability is 0.
B
Equivalent fractions are made when you multiply both the top (numerator) and the bottom (denominator) of the fraction by the same number. The only choice that is correct here is B.