He can throw the hammer in the direction opposite to the direction he wants to travel in. The hammer will exert an equal and opposite force on him, as per Newton's third law, and this will help him move towards the space station.
<span>The momentum of the basketball is three times that of the softball. Momentum equals mass times velocity. Therefore, if the basketball and softball are moving at the same velocity, and the basketball has three times the mass of the softball, the basketball has three times the momentum of the softball.</span>
Answer:
(a) I_A=1/12ML²
(b) I_B=1/3ML²
Explanation:
We know that the moment of inertia of a rod of mass M and lenght L about its center is 1/12ML².
(a) If the rod is bent exactly at its center, the distance from every point of the rod to the axis doesn't change. Since the moment of inertia depends on the distance of every mass to this axis, the moment of inertia remains the same. In other words, I_A=1/12ML².
(b) The two ends and the point where the two segments meet form an isorrectangle triangle. So the distance between the ends d can be calculated using the Pythagorean Theorem:
Next, the point where the two segments meet, the midpoint of the line connecting the two ends of the rod, and an end of the rod form another rectangle triangle, so we can calculate the distance between the two axis x using Pythagorean Theorem again:
Finally, using the Parallel Axis Theorem, we calculate I_B:
The answer is B. A frame of reference that is accelerating.