Historically which is the oldest form of statistics?
1 answer:
Descriptive statistics are historically the oldest form of statistics. The brief coefficients that summarize a given data set, this can either be a representation of the entire population or a sample of it. The Descriptive statistics are further broken down into measure of variability and measure of central tendency.
You might be interested in
Answer:
b = 17.55
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + b^2 = 18^2
16 + b^2 = 324
<u>-16 -16</u>
b^2 = 308
square root them
<u>b = 17.55</u>
let me know if it is correct!
Answer:
a
Step-by-step explanation:
if he passes he will be happy
Answer:
<h3>Question 1</h3>
sec²θ + cosec²θ = 1/cos²θ + 1/sin²θ = (sin²θ + cos²θ)/(sin²θcos²θ) = 1 / (sin²θcos²θ) = [(sin²θ + cos²θ)/sinθcosθ]² = (sinθ/cosθ + cosθ/sinθ)² = (tanθ + cotθ)² <h3>Question 2</h3>
(1 - tan²θ) / (1 + tan²θ) = (1 - sin²θ/cos²θ) / (1 + sin²θ/cos²θ) = (cos²θ - sin²θ) / (cos²θ + sin²θ) = (cosθ + sinθ)(cosθ - sinθ) / 1 = (cosθ + sinθ)(cosθ - sinθ) <h3>Question 3</h3>
sinθ/ (1 - cotθ) + cosθ / (1 - tanθ) = sinθ / (1 - cosθ/sinθ) + cosθ / (1 - sinθ/cosθ) = sinθ/ [(sinθ - cosθ) / sinθ] + cosθ / [(cosθ - sinθ)/cosθ] = sin²θ/ (sinθ - cosθ) + cos²θ/(cosθ - sinθ) = sin²θ/ (sinθ - cosθ) - cos²θ/(sinθ - cosθ) = (sin²θ - cos²θ) / (sinθ - cosθ) = (sinθ + cosθ)(sinθ - cosθ) / (sinθ - cosθ) = sinθ + cosθ
You do 1/9*9*300 which you can probably do
Answer:
6.19
Step-by-step explanation:
Step 1:
w - 3.83 = 2.36
Step 2:
w = 2.36 + 3.83
Answer:
w = 6.19
Hope This Helps :)