The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)
Answer:
C - no antibodies
Explanation:
I dont think there is any blood type without antibodies