The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load.
Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way.
When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence.
A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces.
The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
Thermal energy gives the particles of the substance kinetic energy because temperature is an average measure of kinetic enegy of the particle. If we give them thermal energy the particle will move faster, gaining enough energy to escape and become free. For example, from solid to liquid, the particles would espace their fixed position and be free to move as a liquid.
Answer is: 1973.17N aprox.
step by step in the pic below
Answer:
I belive it would be "C"
Explanation:
If it was any of the other answers "B" it would instantly stop. "A" it would roll forever.
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J
<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:
where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!
<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>
<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity