Answer:
showm
Explanation:
Consider a dipole having magnetic moment 'm' is placed in magnetic field then the torque exerted by the field on the dipole is
Now to rotate the dipole in the field to its final position the work required to be done is
Minimum energy mB is for the case when m is anti parallel to B.
Minimum energy -mB is for the case when m is parallel to B.
1) A The 78g
2) C Push on the wagon in the opposite direction as Jack with a force that is the same as Jack is applying.
Answer:
exercise dailyyy
Help you control your weight. ...
Reduce your risk of heart diseases. ...
Help your body manage blood sugar and insulin levels. ...
Help you quit smoking. ...
Improve your mental health and mood. ...
Help keep your thinking, learning, and judgment skills sharp as you age.
Explanation:
Answer:
speed and time are Vf = 4.43 m/s and t = 0.45 s
Explanation:
This is a problem of free fall, we have the equations of kinematics
Vf² = Vo² + 2g x
As the object is released the initial velocity is zero, let's look at the final velocity with the equation
Vf = √( 2 g X)
Vf = √(2 9.8 1)
Vf = 4.43 m/s
This is the speed with which it reaches the ground
Having the final speed we can find the time
Vf = Vo + g t
t = Vf / g
t = 4.43 / 9.8
t = 0.45 s
This is the time of fall of the body to touch the ground
Answer:
The speed of q₂ is
Explanation:
Given that,
Distance = 0.4 m apart
Suppose, A small metal sphere, carrying a net charge q₁ = −2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q₂ = −8μC and mass 1.50g, is projected toward q₁. When the two spheres are 0.800m apart, q₂ is moving toward q₁ with speed 20m/s.
We need to calculate the speed of q₂
Using conservation of energy
Put the value into the formula
Hence, The speed of q₂ is