General Idea:
When a point or figure on a coordinate plane is moved by sliding it to the right or left or up or down, the movement is called a translation.
Say a point P(x, y) moves up or down ' k ' units, then we can represent that transformation by adding or subtracting respectively 'k' unit to the y-coordinate of the point P.
In the same way if P(x, y) moves right or left ' h ' units, then we can represent that transformation by adding or subtracting respectively 'h' units to the x-coordinate.
P(x, y) becomes . We need to use ' + ' sign for 'up' or 'right' translation and use ' - ' sign for ' down' or 'left' translation.
Applying the concept:
The point A of Pre-image is (0, 0). And the point A' of image after translation is (5, 2). We can notice that all the points from the pre-image moves 'UP' 2 units and 'RIGHT' 5 units.
Conclusion:
The transformation that maps ABCD onto its image is translation given by (x + 5, y + 2),
In other words, we can say ABCD is translated 5 units RIGHT and 2 units UP to get to A'B'C'D'.
Answer:
140
Step-by-step explanation:
Solve 40% of 350.
The simplest ratio is 1/3. Equivalent ratios would be 3/9 and 5/15.
K=5
if you add 5 to f(x) it will move up five and become g(x)
Responda:
Preço = $ 400
Explicação passo a passo:
Dado que:
Primeira opção :
Pagamento em 5 investimento igual
Segunda opçao :
Pagamento feito em 8 iguais. Investimento
O preço por parcela do primeiro investimento é 30 a mais do que cada um do segundo
Deixe o preço do telefone = p
Valor por prestação = x
Segunda parcela:
Preço = 8x
Primeiro :
Valor por parcela = x + 30
P = 5 (x + 30)
Preço = 5x + 150
Portanto, igualando as duas equações:
8x = 5x + 150
8x - 3x = 150
5x = 150
x = $ 50
Usando qualquer das equações de preço:
Preço = 8x
Preço = 8 * 50
Preço do telefone = $ 400