The probability of being 25-35 years and having a haemoglobin level above 11 is 34%.
The probability of having a haemoglobin level above 11 is 36%.
Being 25-35 years and having a hemoglobin level above 11 are not dependent on each other.
<h3>What are the probabilities?
</h3>
Probability determines the odds that a random event would occur. The odds of the event happening lie between 0 and 1.
The probability of being 25-35 years and having a haemoglobin level above 11 = number of people between 25 - 35 that have a level above 11 / total number of people between 25 - 35
44 / 128 = 34%
The probability of having a haemoglobin level above 11 = number of people with a level above 11 / total number of respondents
153 / 429 = 36%
To learn more about probability, please check: brainly.com/question/13234031
#SPJ1
Answer:
(3x+4)(5x+7)
Step-by-step explanation:
15x^2
+41x+28
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^2
+ax+bx+28. To find a and b, set up a system to be solved.
a+b=41
ab=15×28=420
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 420.
1,420
2,210
3,140
4,105
5,84
6,70
7,60
10,42
12,35
14,30
15,28
20,21
Calculate the sum for each pair.
1+420=421
2+210=212
3+140=143
4+105=109
5+84=89
6+70=76
7+60=67
10+42=52
12+35=47
14+30=44
15+28=43
20+21=41
The solution is the pair that gives sum 41.
a=20
b=21
Rewrite 15x^2
+41x+28 as (15x^2
+20x)+(21x+28).
(15x^2
+20x)+(21x+28)
Factor out 5x in the first and 7 in the second group.
5x(3x+4)+7(3x+4)
Factor out common term 3x+4 by using distributive property.
(3x+4)(5x+7)
Yes its correct. 7.4-.2=7.2