True. Being an electrical engineer, you learn very quickly that current will take All paths of resistance. But, the higher the resistance the lower the voltage. So, if a high resistance is shorted and the current flows through the short, there will be some small voltage across it, so some small amount of current will still flow through the high resistance.
" This manual applies to Compact Liquid <span>Fuel Pumps & </span>Dispensers<span> The </span>liquid pressure<span> range is from 0.5 - 20m These totals </span>can<span> be displayed by </span>pressing<span> the CLEAR </span>button<span> on the preset keypad five times in When connecting to sites </span>powered<span> by. "</span>
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:
where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,
<u>f = 12 cm</u>
Answer:
Option C: Current X has a lower potential difference than Current Y.
Explanation:
The chart above only shows the potential difference of difference current.
A careful observation of the chart shows that Current X has a lower potential difference than Current Y.
Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
All this energy will become kinetic energy and we can find the velocity.