a. 7.0 m/s
First of all, we need to convert the angular speed (1200 rpm) from rpm to rad/s:
Now we know that the row is located 5.6 cm from the centre of the disc:
r = 5.6 cm = 0.056 m
So we can find the tangential speed of the row as the product between the angular speed and the distance of the row from the centre of the circle:
b.
The acceleration of the row of data (centripetal acceleration) is given by
where we have
v = 7.0 m/s is the tangential speed
r = 0.056 m is the distance of the row from the centre of the trajectory
Substituting numbers into the formula, we find
Answer:
They are...if I'm correct Chemically combined, sorry if I'm wrong.
Answer:
Explanation:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude
the force of the wind F, acting horizontally, with intensity
and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):
By dividing the second equation by the first one, we get
From which we find
which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
Answer:
Explanation: This is done using the equation:
Because the Radius is a know value. We have the following.
Which is:
4188.7902 mm