Answer:
22%
Explanation:
55 - 45 = 10
10/45 simplifies to 2/9
2/9 = 0.22222... so 22.22% (rounded 22%)
Answer:
The time after which the two stones meet is tₓ = 4 s
Explanation:
Given data,
The height of the building, h = 200 m
The velocity of the stone thrown from foot of the building, U = 50 m/s
Using the II equation of motion
S = ut + ½ gt²
Let tₓ be the time where the two stones meet and x be the distance covered from the top of the building
The equation for the stone dropped from top of the building becomes
x = 0 + ½ gtₓ²
The equation for the stone thrown from the base becomes
S - x = U tₓ - ½ gtₓ² (∵ the motion of the stone is in opposite direction)
Adding these two equations,
x + (S - x) = U tₓ
S = U tₓ
200 = 50 tₓ
∴ tₓ = 4 s
Hence, the time after which the two stones meet is tₓ = 4 s
Answer:
r = 2161.9 m
Explanation:
Aerodynamic lift(L) is perpendicular to the wing, which is tilted 40 degrees to the horizontal.
Since the plane is moving in a horizontal circle, the vertical component of the lift must cancel the weight W of the airplane, but the horizontal component is the centripetal force that keeps it in a circle.
L is perpendicular to wing at angle θ with respect to horizontal
Thus,
Vertical component of lift is:
L cosθ = W = mg
Thus, m = L cosθ / g - - - - (eq1)
Horizontal component of lift is:
L sinθ = centripetal force = mv² / r - - - - (eq2)
Combining equations 1 and 2,we have;
L sinθ = (L cosθ / g)(v² / r)
L cancels out on both sides to give;
tanθ = v²/ rg
r = v² / (g tanθ)
We are given;
velocity; v = 480 km/hr = 480 x 10/36 = 133.33 m/s
r = 133.33²/[(9.8) tan(40)] = 2161.9 m
The acceleration formula goes like this: a= (vf-vi)/t so it would be (13-4)/3 Thus the answer is 3m/s^2