Answer:
-25
Step-by-step explanation:
2x + 50 = 0
2x = 0 - 50
= -50
x = -50 / 2
= -25
<em>Hope this helps</em>
<em>:D</em>
Answer:
1000x or 1000 thousand times greater
Step-by-step explanation:
every decimal to the left is 10x greater than the one right of it.
<u>We are given:</u>
An even number 'n', multiplied by the next consecutive even number is 168
<u>Solving for n:</u>
From the given statement, we can say that:
n(n+2) = 168 [<em>n multiplied by the next even number 'n+2'</em>]
n² + 2n = 168
n² + 2n - 168 = 0 [<em>subtracting 168 from both sides</em>]
We can see that we now have a quadratic equation, solving using splitting the middle term
n² + 14n - 12n - 168 = 0
n(n + 14) -12(n + 14) = 0 <em>[factoring out common terms</em>]
(n-12)(n+14) = 0
Here, we can divide both sides by either (n-12) OR (n+14)
Checking the result in both the cases:
(n + 14) = 0/(n-12) (n-12) = 0/(n+14)
n + 14 = 0 n - 12 = 0
n = -14 n = 12
Both these values are even and since we are not told if the number 'n' is positive or negative, both 12 and -14 are the possible values of n
Answer:
A) 10
Step-by-step explanation:
In the US, a number in scientific notation will have a mantissa (a) such that ...
1 ≤ a < 10
That is, the value of "a" must be between 1 and 10 (not including 10).
_____
<em>Comment on alternatives</em>
In other places or in particular applications (some computer programming languages), the standard form of the number may be a×10^n with ...
0.1 ≤ a < 1
In engineering use, the form of the number is often chosen so that "n" is a multiple of 3, and "a" is in the range ...
1 ≤ a < 1000
This makes it easier to identify and use the appropriate standard SI prefix: nano-, micro-, milli-, kilo-, mega-, giga-, and so on.