Answer:
The forces offset to produce a net force of 8 N
since the ball is 1 kg
F = ma
a = f/m = 8 N/1 kg = 8 (kg m)/(s^2 kg) = 8 m/s^2
The required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
First, we must understand that the component of the velocity along the vertical is due to maximum height achieved and expressed as usin
θ.
The component of the velocity along the horizontal is due to the range of the object and is expressed as ucosθ.
If the <u>air resistance is ignored</u>, the velocity of the object will be constant throughout the flight and the initial velocity will be equal to the final velocity.
Hence the required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
Learn more here; brainly.com/question/12870645
It’s used in measuring distance from earth with other celestial object. Hope this helps mark brainest
According to above question ~
Let's find the charge (q) by using formula ~
Hence, 12 coulombs of charge flow past any point in the wire in 3 seconds
Answer:
Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives
For the y-direction gives
Combining both equation yields the y_component of the final velocity
Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.