Answer:
4,38%
small molecular volumes
Decrease
Explanation:
The percent difference between the ideal and real gas is:
(47,8atm - 45,7 atm) / 47,8 atm × 100 = 4,39% ≈ <em>4,38%</em>
This difference is considered significant, and is best explained because argon atoms have relatively <em>small molecular volumes. </em>That produce an increasing in intermolecular forces deviating the system of ideal gas behavior.
Therefore, an increasing in volume will produce an ideal gas behavior. Thus:
If the volume of the container were increased to 2.00 L, you would expect the percent difference between the ideal and real gas to <em>decrease</em>
<em />
I hope it helps!
Eyepiece, finder-scope, optical tube, aperture, focuser, and mount
Answer:
Good question i really dont know sorry
Explanation:
jhjhhshhjjjh
Answer:
20.3-17.5=2.8ml 1ml=1cm3 vol= 2.8cm3
Explanation:
<span>The correct answer is that an ionic bond forms between charged particles. To form this bond, the particles transfer valence electrons (those in the outermost orbit). Specifically, in ionic bonding, the metal atom loses its electrons (thus becoming positive) and the nonmetal atom gains electrons (thus becoming negative).</span>