Since the Earth is almost spherical in shape, we are actually to find first the volume of the spherical segment at a depth of 1,000 m. The radius of the Earth is 6,371,000 meters. The volume of a spherical segment is:
V = 1/3*πh²(3r - h)
Substituting the values and making sure the units is in mm,
V = 1/3*π(1000 m * 1000 mm/1 m)²[3(6,371,000 m * 1000 mm/1 m) - (1000 m * 1000 mm/1 m)]
V = 2×10²² mm³
Thus, the total amount of bacteria is:
2×10²² mm³ * 100 bacteria/1 mm³ = 2×10²⁴ bacteria
B is the answer, I’m really good at this subject
Answer:
1. Density = 1200[kg/m^3]; 2. Volume= 0.005775[m^3], mass= 15.59[kg]
Explanation:
1. We know that the density is defined by the following expression.
2. First we need to convert the units to meters.
wide = 35[cm] = 35/100 = 0.35[m]
long = 11 [dm] = 11 decimeters = 11/10 = 1.1[m]
Thick = 15[mm] = 15/1000 = 0.015[m]
Now we can find the density using the expression for the density.
Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>