<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:
Moles of HI = 0.550 moles
Volume of container = 2.00 L
For the given chemical equation:
<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of for above equation follows:
We are given:
Putting values in above expression, we get:
Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Covalent compounds are composed of atoms that are linked via covalent bonds i.e. bonds formed by mutual sharing of electrons. This is in complete contrast to ionic compounds which are held together by ionic bonds, i.e. bonds formed by complete transfer of electrons from one atom to the other.
In the given examples we have:
Barium nitrate: Ba(NO3)2 - Ionic
Dinitrogen tetroxide: N2O4- Covalent
Boron trifluoride: BF3-Covalent
Ammonium sulfate: (NH4)2SO4- Ionic
Carbon tetrachloride: CCl4- Covalent
Barium chloride: BaCl2 - Ionic
Answer:
146.85 g/mol
Explanation:
PV=nRT
n=mass/molar mass
covert from mmhg to atm = 0.184 atm
convert from ml to L= 0.108 L
convert from degree C to K= 456.15 K
convert from mg to g= 0.07796g
then rearrange the formula:
n=PV/RT
=(0.184)(0.108)/(0.08206)(456.15)
n= 5.308*10^(-4)
rearrange the n formula interms of molar mass:
Molar mass= mass/n
=0.07796/(5.308*10^-4)
molar mass= 146.85g/mol
Answer:
a) increase exponentially.
Explanation:
The vapor pressure is depend only on temperature.
The vapor pressure of liquid does not depend upon amount of liquid. For example whether the liquid is 50 g or 30 g its vapor pressure will remain same according to the temperature.
The temperature and vapor pressure have exponential relationship. As the temperature of liquid increases its vapor pressure also goes to increase. When the temperature of liquid goes to decrease its vapor pressure also decreases.
The change in vapor pressure of substance when temperature changes is given as,
ln P₂/P₁ = ΔH(va)/R (1/T₁ - 1/T₂)