Answer:
x=3
Step-by-step explanation:
4-2x-4=-2-4
-2x=-6
\frac{-2x}{-2}=\frac{-6}{-2}
x=3
if i can get brainliest that would be great
Each scenario can be used to simulate probability, and there are 3 correct scenarios and 2 incorrect scenarios in the list of options
<h3>How to categorize the simulations?</h3>
From the question, we have the following parameters:
- Number of throws = 30
- Number of hits = 20
This means that the probability of hit is:
P(Hit) = 20/30
Simplify
P(Hit) = 2/3
Using the complement rule,
P(Miss) = 1/3
The above means that the simulation that represents the situation must have the following parameters:
- P(Success) = 2/3
- P(Failure) = 1/3
- Number of experiments = 3
Using the above highlights, the correct scenarios are:
- Rolling a die three times with numbers 1 to 4 representing a hit
- Spinner a spinner of 3 equal sections three times with two sections representing hit
- Spinner a spinner of 6 equal sections three times with four sections representing hit
Read more about probability at:
brainly.com/question/25870256
#SPJ1
Answer:
(7,6)
Step-by-step explanation:
Kevin installed a certain brand of automatic garage door opener that utilizes a transmitter control with four independent switches, each one set on or off. The receiver (wired to the door) must be set with the same pattern as the transmitter. If six neighbors with the same type of opener set their switches independently.<u>The probability of at least one pair of neighbors using the same settings is 0.65633</u>
Step-by-step explanation:
<u>Step 1</u>
In the question it is given that
Automatic garage door opener utilizes a transmitter control with four independent switches
<u>So .the number of Combinations possible with the Transmitters </u>=
2*2*2*2= 16
<u>
Step 2</u>
Probability of at least one pair of neighbors using the same settings = 1- Probability of All Neighbors using different settings.
= 1- 16*15*14*13*12*11/(16^6)
<u>
Step 3</u>
Probability of at least one pair of neighbors using the same settings=
= 1- 0.343666
<u>
Step 4</u>
<u>So the probability of at least </u>one pair of neighbors using the same settings
is 0.65633