Answer:
Reversible reactions exhibit the same reaction rate for forward and reverse reactions at equilibrium.
Reversible reactions exhibit constant concentrations of reactants and products at equilibrium
Explanation:
A reversible reaction is a reaction that can proceed in both forward and backward direction.
Equilibrium is attained in a chemical system when there is no observable change in the properties of the system.
At equilibrium, a reversible reaction is occurring in at same rate. That is, the forward and backward reaction is occurring at the same rate. As the rate of the forward and backward reaction remains the same, the concentrations of the reactants and products will also be the same in order for the equilibrium to be maintained.
Answer:
a. Kp=1.4
b.Kp=2.0 * 10^-4
c.Kp=2.0 * 10^5
Explanation:
For the reaction
A(g)⇌2B(g)
Kp is defined as:
The conditions in the system are:
A B
initial 0 1 atm
equilibrium x 1atm-2x
At the beginning, we don’t have any A in the system, so B starts to react to produce A until the system reaches the equilibrium producing x amount of A. From the stoichiometric relationship in the reaction we get that to produce x amount of A we need to 2x amount of B so in the equilibrium we will have 1 atm – 2x of B, as it is showed in the table.
Replacing these values in the expression for Kp we get:
Working with this equation:
This last expression is quadratic expression with a=4, b=-(4+Kp) and c=1
The general expression to solve these kinds of equations is:
(equation 1)
We just take the positive values from the solution since negative partial pressures don´t make physical sense.
Kp = 1.4
With x1 we get a partial pressure of:
Since negative partial pressure don´t make physical sense x1 is not the solution for the system.
With x2 we get:
These partial pressures make sense so x2 is the solution for the equation.
We follow the same analysis for the other values of Kp.
Kp=2*10^-4
X1=0.505
X2=0.495
With x1
Not sense.
With x2
X2 is the solution for this equation.
Kp=2*10^5
X1=50001
With x1
Not sense.
With x2
X2 is the solution for this equation.
Answer:
That would be helium, with a melting point of 0.95 K (-272.20 °C)—although this happens only under considerable pressure (~25 atmospheres). At ordinary pressure, helium would remain liquid even if it could be chilled to absolute zero.
The greater the energy, the larger the frequency and the shorter (smaller) the wavelength. Given the relationship between wavelength and frequency — the higher the frequency, the shorter the wavelength — it follows that short wavelengths are more energetic<span> than long wavelengths.</span>