Answer:
Let p represent the # of pages in the book. Then, Nora has already read 0.30p pages and has 0.70p pages left to read.
If she reads 25% pages/night, that means reading 0.25(0.70)p pages per night, or 17.5 pages/night. If 28% p/n, that means 0.28(0.70)p pages/night, or 19.6p pages/night.
How many nights will it take Nora to finish the book if she reads 25% of 7/10 of the book per night? Without any calculations, we can answer this by "4 nights, since she reads 1/4 of the unread portion of the book per night."
If she reads 28% of 7/10 of the book per night, that will require fewer nights:
First night: 28%
Second night: 28%
Third night: 28%
Total: 3(28%) = 84%
This leaves 16% to read on the final night.
This is one interpretation of what I think is a poorly worded question.
The author of this question might have meant reading 25% of the remaining unread pages per night, which leads to a different answer.
Answer:
5 students
Step-by-step explanation:
2/3 of 30 = 20 students
1/4 of 20 = 5 students
9, 14, and 22.
The formula for checking if a triangle will work is side a + side b > side c.
The only one that works is 9, 14, and 22.
Classic Algebra and its unnecessarily complicated sentence structure. As you may have probably known, Algebra has its own "vocabulary set".
"the length of a rectangle exceeds its width by 6 inches" -> length is 6 in. longer than width -> l= w + 6
Since we're solving for the length and width, let's give them each variables.
length = l = w+6
width = w
The next bit of information is "the area is 40 square inches"
Applying the formula for the area of a rectangle we can set up:
l x w = 40
replace "l", or length, with it's alternate value.
(w+6) x w = 40
distribute
+ 6w = 40
subtract 40 from both sides
+ 6w - 40 = 0
factor
(w - 4)(w + 10) = 0
solve for w
w= 4, or -10
So great, we have 2 values; which one do we choose? Since this problem is referring to lengths and inches, we will have to choose the positive value. There is not such thing as a negative distance in the real world.
We now have half of the problem solved: width. Now we just need to find the length which we can do but substituting it back into the original alternate value of l.
l = w + 6
w=4
l = 4 + 6 = 10
The length is 10 in. and the width is 4 in. Hope this helps!
Convert bottom number to same number
3 and 2
same number is 6
4/3 times 2/2=8/6
3/2 times 3/3=9/6
4/3+3/2=8/6+9/6=17/6=2 and 5/6