For this case we first think that the skateboard and the child are one body.
We have then:
1 = jug
2 = skateboard + boy
By conservation of the linear amount of movement:
M1V1i + M2V2i = M1V1f + M2V2f
Initial rest:
v1i = v2i = 0
0 = M1V1f + M2V2f
Substituting values
0 = (7.8) (3.2) + (M2) (- 0.65)
0 = 24.96 + M2 (-0.65)
-24.96 = (-0.65) M2
M2 = (-24.96) / (- 0.65) = 38.4 kg
Then, the child's mass is:
M2 = Mskateboard + Mb
Clearing:
Mb = M2-Mskateboard
Mb = 38.4 - 1.9
Mb = 36.5 Kg
answer:
the boy's mass is 36.5 Kg
The time lapse between when the bat emits the sound and when it hears the echo is 0.05 s.
From the question given above, the following data were obtained:
Velocity of sound (v) = 343 m/s
Distance (x) = 8.42 m
Time (t) =?
We can obtain obtained the time as illustrated below:
v = 2x / t
343 = 2 × 8.42 / t
343 = 16.84 / t
Cross multiply
343 × t = 16.84
Divide both side by 343
t = 16.84/343
t = 0.05 s
Thus, the time between when the bat emits the sound and when it hears the echo is 0.05 s.
<h3>
How does a bat know how far away something is?</h3>
A bat emits a sound wave and carefully listens to the echoes that return to it. The returning information is processed by the bat's brain in the same way that we processed our shouting sound with a stopwatch and calculator. The bat's brain determines the distance of an object by measuring how long it takes for a noise to return.
Learn more about time elapses between when the bat emits the sound :
<u>brainly.com/question/16931690</u>
#SPJ4
Correction question:
A bat emits a sonar sound wave (343 m/s) that bounces off a mosquito 8.42 m away. How much time elapses between when the bat emits the sound and when it hears the echo? (Unit = s)
Efficiency = useful energy out / total energy in x 100
= 100/400 x 100
=0.25 x 100
= 25%
25%
I like playing basketball. So I'm the object in motion. Until an unbalanced force comes and hits me I fall and stay at rest.
Given :
Two forces act on a 6.00-kg object. One of the forces is 10.0 N.
Acceleration of object 2 m/s².
To Find :
The greatest possible magnitude of the other force.\
Solution :
Let, other force is f.
So, net force, F = 10 + f.
Now, acceleration is given by :
Therefore, the greatest possible magnitude of the other force is 2 N.
Hence, this is the required solution.