Answer:
See explanation
Explanation:
We have been told in the question that the equation of the reaction is; 1 slice of cheese + 2 slices of bread = 1 Grilled cheese sandwich ( mole ratio is, 1:2:1) .
Then the reagents are 10 slices of cheese 30 slices of bread. It then follows that 10 slices of cheese should be combined with 20 slices of bread according to the mole ratio.
However, we have 30 slices of bread and 10 slices of cheese so cheese is the limiting reactant while bread is the reactant in excess.
Yes, the number of glilled chese sandwishes he can make is decided by the limiting reactant because it gets used up most.
The balanced chemical reaction is written as:
<span>3NO2 + H2O = 2HNO3 + NO
Assuming that the gases in this reaction are ideal gas, then we can use the conversion from L to moles which is 1 mol of ideal gas is equal to 22.4 L. We calculate as follows:
538 L NO2 ( 1 mol / 22.4L ) ( 1 mol NO / 3 mol NO2 ) ( 22.4 L / 1 mol ) = 179.33 L NO is produced</span>
HELP ME!!!
Project: Modeling potential and kinetic energy
Assignment Summary
For this assignment, you will develop a model that shows a roller coaster cart in four different positions on a track. You will then use this model to discuss the changes in potential and kinetic energy of the cart as it moves along the track.
Background Information
The two most common forms of energy are potential energy and kinetic energy. Potential energy is the stored energy an object has due to its position. Kinetic energy is the energy an object has due to its motion. An object’s kinetic energy changes with its motion, while its potential energy changes with its position, but the total energy stays the same. If potential energy increases, then kinetic energy decreases. If potential energy decreases, then kinetic energy increases.
Potential energy related to the height of an object is called gravitational potential energy. Gravitational potential energy is directly related to an object’s mass, the acceleration due to gravity, and an object’s height.
Materials
One poster board per student Drawing utensils
Assignment Instructions
Step 1: Prepare for the project.
a) Read the entire Student Guide before you begin this project.
b) If anything is unclear, be sure to ask your teacher for assistance before you begin.
c) Gather the materials you will need to complete this project.
Step 2: Create your poster.
a) On the poster board, draw a roller coaster track that starts with one large hill, then is followed by a valley and another, smaller hill.
b) Draw a cart in four positions on the track as outlined below.
i. Draw the first cart at the top of the first hill. Label it A.
ii. Draw the second cart going down the first hill into the valley. Label it B.
iii. Draw the third cart at the bottom of the valley. Assume that the height of the cart in this position is zero. Label it C.
iv. Draw the last cart at the top of the second, smaller hill. Label it D.
c) Make sure that your name is on the poster. Step 3: Type one to two paragraphs that describe the energy of the cart.
a) Type one to two paragraphs describing the changes in potential and kinetic energy of the cart. Be sure to discuss how the potential and kinetic energy of the cart changes at each of the four positions along the track, and explain why these changes occur.
b) Make sure your name is on the document.
c) Later, you will submit this document through the virtual classroom.
Step 4: Evaluate your project using this checklist.
If you can check each criterion below, you are ready to submit your project.
Did you draw a model of a roller coaster track with one large hill, a valley, and a smaller hill?
Did you draw a cart on the track in the four required positions A–D? Did you label the cart at each of the four positions?
Did you type a paragraph describing the changes in potential and kinetic energy of the cart at each of the four positions on the roller coaster track? Did you explain why the changes in potential and kinetic energy occur?
Step 5: Revise and submit your project.
a) If you were unable to check off all of the requirements on the checklist, go back and make sure that your project is complete.
b) When you have completed your project, submit your poster to your teacher for grading. Be sure that your name is on it.
c) Submit the typewritten document through the virtual classroom. Be sure that your name is on it.
Step 6: Clean up your work space.
a) Clean up your work space. Return any reusable materials to your teacher and throw away any trash.
b) Congratulations! You have completed your project.
Electric energy and sink
Answer:
THE MASS OF THE LIQUID IS 22.5 g
Explanation:
Density = 0.180 g/cm3
Side length = 5 cm
Mass = unknown
To calculate the mass of the liquid, we use the formula:
Mass = density * volume
Volume of a cube or cuboid container = l^3
Volume = 5 ^3 = 125 cm3
So therefore, the mass of the liquid is:
Mass = 0.180 * 125
Mass = 22.5 g
In conclusion, the mass of the liquid in the container is 22.5 g