Whenever the fuel is being used up, a star explodes and the energy leakage from a star's core ceases.
Explanation:
The dying star expands in the "Red Giant," before even the inevitable collapse starts, due to nuclear reactions just outside of the core.
It becomes a white dwarf star when the star has almost the same density as the Sun. If it's much larger, a supernova explosion could take place and leave a neutron star away. However, if it is very large–at least three times the Sun's mass–the crumbling core of the star, nothing will ever stop it from crumbling. The star is imploding into a black hole, an endless gravitational loop in space.
Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
Answer: capillary action
Explanation: it occurs when the adhesion forces (attraction between two surfaces or substances) in the liquid are stronger than the cohesion forces (attraction between the same molecule)
NaOH will dissociate as Na+ and OH- in the solution.