Ignoring air resistance, the bullet's horizontal velocity is constant:
In 1.3 seconds, we can expect it to travel
Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.
Answer:
Most electric charge is carried by the electrons and protons within an atom. Conversely, two protons repel each other, as do two electrons. Advertisement. Protons and electrons create electric fields, which exert a force called the Coulomb force, which radiates outward in all directions.
Answer:
As Per Provided Information
Moving body has 2m/s² acceleration
Time taken by body is 4 second
We are asked to find the 'change in velocity' ( ∆V) by the body.
<u>Formula Used here</u>
<u>Substituting </u><u>the </u><u>given </u><u>value</u>
<u></u>
<u>Therefore</u><u>,</u>
- <u>Change </u><u>in </u><u>velocity </u><u>is </u><u>8</u><u> </u><u>m/</u><u>s</u>
<u>Answer:</u>
The ball is rolling at a speed of 0.02 meter per second.
<u>Step by step explanation:</u>
We are given that there is a 800 gram bowling ball rolling in a straight line. If its momentum is given to be 16 kg.m/sec, we are to find its velocity.
For this, we will use the formula of momentum.
<em>Momentum = mass × velocity</em>
16 = 800 × velocity
Velocity = 16/800 = 0.02 meter per second